Iterative flexible ranking of Poland’s provinces with respect to industry development level

Authors

DOI:

https://doi.org/10.24917/20801653.391.2

Keywords:

aggregate index, industry, linear ordering, provinces, ranking

Abstract

Linear ordering or ranking of administrative geographical units is widely found in statistical and regional literature. The selection of available variables to characterize general criteria is a key problem in such ordering and it is impossible to name the ideal list of variables for any practical problem as the selection is always somehow subjective. The method proposed in the article allows non-identical sets of variables to be used. The initial list of variables being standardized is the same for all but at each step one variable is eliminated – the one with the highest moduls of standardized value. The procedure combines two previously proposed methods – flexible ordering with step-wise elimination of extreme values (Sokołowski, Markowska, 2019), and iterative ordering with new standardization at each step (Sokołowski, Markowska, 2017). It is important to study how the ranking changes with each step of variable elimination – possibly different varia- bles are eliminated for different objects. The flexible ranking of Poland’s provinces, characterized by the level of industry, is presented as an illustrative example. The initial list of characteristics consists of 14 variables published in Poland’s Provinces Yearbook 2021 (GUS, 2022).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Małgorzata Markowska, Uniwersytet Ekonomiczny we Wrocławiu

Małgorzata Markowska, is an associate professor at the Regional Economics Chair of Wrocław University of Economics and Business. She is a member of Polish Classification Society, the Polish Statistical Association, the Polish Economic Association, and the Regional Studies Association. Her research deals with econometric measurement, evaluation, variability and dynamics of development, competitiveness, the knowledge-based economy, smart specializations, and convergence and innovativeness in European regional space. As an author or co-author she published more than 110 academic papers and 25 chapters in books, and recently her own book: “Dynamic Taxonomy of Regions’ Innovativeness”. She has taken part in 12 academic projects financed by the Polish National Centre of Science and the European Union, and in projects for governmental, local administration and business units.

Andrzej Sokołowski, Uniwersytet Andrzeja Frycza Modrzewskiego w Krakowie

Andrzej Sokołowski, is a Professor of Statistics at the Andrzej Frycz Modrzewski University in Cracow, at the Faculty of Management and Social Communication. His scientific activity is concentrated on application of statistical methods in such fields as economics and management, medicine, sports, politics and music. In theoretical statistics he is interested in mathematical statistics, multivariate analysis and medical statistics. He is an author of more than 60 chapters in books and monographs, 160 scientific papers and 160 contribution at conferences. For three terms he was President the Polish Classification Society and for almost twenty years he was a member of International Federation of Classification Societies Council

Jacek Wychowanek, Wałbrzych Higher School of Management and Entrepreneurship

Jacek Wychowanek, PhD, assistant professor in Wałbrzych Higher School of Management and Entrepreneurship, Faculty of Education, Business and Engineering. Author of several academic articles. In his research work, he discusses the role of innovation and tradition in developing competitive advantage for small enterprises in the bakery and confectionery industry as well as the functioning of family businesses. He feels fulfilled in playing the role of a link between science and business. As an academic teacher and an entrepreneur, he supports students with his experience in cooperation with institutions in the socio -economic environment.

References

Abrahamowicz, M. (1985). Porządkowanie obiektów wielowymiarowych w przestrzeniach cech di‑ agnostycznych, praca doktorska, Akademia Ekonomiczna w Krakowie.

Bandura, R. (2008). A Survey of Composite Indices Measuring Country Performance: 2008 Update. UNDP/ODS Working Papers. New York

Bąk, A. (2016). Porządkowanie liniowe obiektów metodą Hellwiga i TOPSIS – analiza porównaw- cza. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 426, 22–32.

Bennett, M.K. (1937). On Measurement of Relative National Standards of Living. The Quarterly Journal of Economics, 51, 2, 317–336.

De Muro, P., Mazziotta, M., Pareto, A. (2009). Composite Indices for Multidimensional Development and Poverty: An Application to MDG Indicators. Social Indicators Research, 104, 1–18.

Dziechciarz, J. (2006). Wskaźniki syntetyczne. Polskie dokonania a doświadczenia międzynaro- dowe. W: A. Zeliaś (red.), Przestrzenno‑czasowe modelowanie i prognozowanie zjawisk gosp‑ odarczych. Kraków: Akademia Ekonomiczna w Krakowie, 239–252.

Freudenberg, M. (2003). Composite Indicators of Country Performance. A Critical Assessment.

OECD Science, Technology and Industry Working Papers, 2003/16.

GUS. (2022). Rocznik Statystyczny Województw 2021. Warszawa: Główny Urząd Statystyczny.

Handbook on Constructing Composite Indicators: Methodology and User Guide. (2008). OECD Publishing, Paris.

Hellwig, Z. (1968). Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Przegląd Statystyczny, 4, 307–327.

Shimura, M. (1973). Fuzzy Sets Concept in Rank-Ordering Objects. Journal of Mathematical Analysisi and Applications, 43, 717–733.

Sokołowski, A., Markowska, M. (2017). Iteracyjna metoda liniowego porządkowania obiektów wielocechowych. Przegląd Statystyczny, LXIV, 2, 153–161.

Sokołowski, A., Markowska, M. (2019). Elastyczne porządkowanie liniowe obiektów. XXVIII Konferencja Naukowa Sekcji Klasyfikacji i Analizy Danych Polskiego Towarzystwa Statystycznego. Szczecin: Uniwersytet Szczeciński, 18–20 września 2019 r.

Sokołowski, A., Markowska, M. (2021). Flexible Clustering. W: T. Chadjipadelis, B. Lausen,

A. Markos, T.R. Lee, A. Montanari, R. Nugent (red.), Data Analysis and Rationality in a Complex World. Cham: Springer International Publishing, 253–260.

Published

2025-03-28

How to Cite

Markowska, M., Sokołowski, A., & Wychowanek, J. (2025). Iterative flexible ranking of Poland’s provinces with respect to industry development level. Studies of the Industrial Geography Commission of the Polish Geographical Society, 39(1), 21–32. https://doi.org/10.24917/20801653.391.2

Most read articles by the same author(s)